Data Reprocessing on Worldwide Distributed Systems

Daniel Wicke (Fermilab)

Outline

- Introduction
- Distributed data rereconstruction (Contributing centres, data and job distribution, ...)
- Problems
- Summary

Revision: 1.6 30th August 2004 1

Introduction

Improved understanding of the DØ-Detector

- DØ tracking improved significantly during 2003
- Basis:
 - improved understanding of the DØ-Detector
 - based on reality rather then design/plans
- 100 pb⁻¹ (60%) of the data were reconstructed with older software versions

⇒ Redo reconstruction of data

Rereconstruction

The tasks from Computing perspective

- 100 pb⁻¹ correspond to ca. 300M events.
- Rawdata $250 \text{kB/Event} \implies 75 \text{TB}$.
- DST output $150 \text{kB/Event} \implies 45 \text{TB}$.
- 50s/Event on 1GHz PIII CPUs

 \implies 2000CPUs for completion within 3 Months.

- Central Farm (1000CPUs) used to capacity with data taking.
- Shutdown of 8 weeks sufficient to do 30%.

Available Resources

FNAL Farm,	1000CPUs	DØ installed
GridKa,	300CPUs	DØ installed
Lyon,	220CPUs	DØ installed
Nikhef,	80CPUs	in EDG
	320CPUs	in EDG
SAR,	130CPUs	DØ installed
UK,	340CPUs	DØ installed
Westgrid,	300CPUs	DØ installed, from Oct
External	1690CPUs	(1GHz PIII equiv.)
\Rightarrow capacity more than doubled.		

But: Each cluster is different; even "DØ installed" can be very different.

Application flow of a rereconstruction jobs

- Several TMB files shall be merged before storing.
 - ⇒ Creates more complicated workflow
- Database access from Europe much to slow
 - \Rightarrow old DSTs as Input.

Management of Large Batches of Jobs

Problem

Initialisation, local paths for intermediate and final results, copy mechanisms are different on different clusters: person power intensive.

Base of improvements

Automate linking for several programs into a single job based on a job description and local configurations.

Workflow management: Runjob

- handles chains of executables
- passes output of one program as input to a following
- track metadata
- separates calling details from organisation
- allows for automatic parallelisation of jobs

Distribution of Input Data

Sequential Access through Metadata: SAM

The order of events in the dataset has no meaning.

Optimisation

- Don't loop through file lists.
- Request datasets.
- The order in which files corresponding to a dataset are processed may change.
- The system optimises the order to minimise tape access and tape mounts.

WAN Transport

sam_cp as generic interface to GridFTP, bbftp, tape access . . .

Backflow of Results

TMBs

- Merging of TMBs only possible at FNAL.
- Individual TMBs shouldn't be stored in SAM .
- Backflow "manually" using sam_cp.
 - TMBs and Metadata.
 - Logfiles and results of crosschecks.

DSTs

- Storage initially not foreseen.
- Later: Remote storing into SAM onto decentral locations.
- Transport to user on access.

Distribution of Jobs

Manually

- Problematic datasets were reconstructed from RAW at FNAL.
- Datasets provided in sizes requested by each site.
- Reconstruction of these datasets started remotely
 - ⇒ Individual solutions for administrating jobs.
 - ⇒ Individual solutions for error recovery.

Per GRID

- Within the 3 British sites distribution of jobs done via SAMGrid/JIM.
- Nikhef tried to use EDG (basis of LCG) to distribute jobs to further sites.

Certification of Sites

- Each centre was required to certify, i.e. process a defined dataset of 66 files.
- Results were compared to a reference (which itself was certified by comparing to processing from RAW):

Rereconstruction, Problems

Organisation

- Late release of d0reco
 - ⇒ Implicit dependencies on the (FNAL) environment noticed late.
 - ⇒ Incorrect planning, wrong priorities, unnecessary developments.
 - ⇒ Significant additional delay.
- The flexibility makes planning very difficult.

Data distribution

- Delays occured due to other applications with high number of tape access
- Bottelneck in central file router of SAM.
- Network bottlenecks on the way to some centres.

Job Running

- A large number of jobs crashed (up to 20%).
- Lots of manual intervention.
- Bookkeeping is important.

Data backflow

- Significant number $\mathcal{O}(1/1000)$ of corrupted TMBs after copying back
- GridFTP doesn't check this sufficiently well.

Summary and Outlook

- First Data rereconstruction on globally distributed clusters
 - 300M Events or 45TB of data were processed at 7 centres.
 - -30% or 15TB of these at systems remote of Fermilab.
 - Grid-concepts for data and job distribution were used.
- The concepts foreseen for LHC proven in general.
- Next distributed Data rereconstruction at DØ planned for this year
 - including external Merging, i.e. complete external production.
 - from raw data, i.e. with Database access.
 - using SamGrid/JIM und LCG.